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Review 
Models proposed to explain the electrical 
conductivity of mixtures made of conductive 
and insulating materials 

F. LUX 
Department of Materials Science, Polymer Physics, Technical University of Berlin, Englische 
Strasse 20, D-1000 Berlin 12, Germany 

The electrical conductivity of mixtures of conductive and insulating materials is reviewed. In 
general, the conductivity of such mixtures increases drastically at a certain concentration of 
the conductive component, the so-called percolation concentration. Among the parameters 
influencing the percolation concentration, the filler distribution, filler shape, fi l ler/matrix 
interactions and the processing technique are the most important ones. On the basis of these 
parameters, different models have been proposed aimed at the prediction of the conductivity 
or the percolation concentration. It will be shown here that statistical, geometric or 
thermodynamic models explain the conductivity behaviour of specific mixtures on the basis of 
insufficient assumptions. However, the conductivity seems to be predictable with the help of 
structure-oriented models. 

1. In t roduct ion 
Although every engineering material has a field of 
application in its pure form, many examples exist in 
which pure components are mixed to give new mater- 
ials with tailored properties. One class of those mater- 
ials is constituted of mixtures of either electrical 
conducting and insulating particles or electrical con- 
ductive particles incorporated in an insulating matrix. 
These mixtures have gained a large area of applica- 
tion, e.g. for electromagnetic shielding and antistatic 
purposes. 

The main question concerning these mixtures, is 
how the conductivity changes with the content of the 
conductive filler. Fig. 1 shows the general course of the 
conductivity as a function of the filler content. The 
conductivity is plotted on a logarithmic scale in Fig. 1 
to emphasize the drastic increase in the conductivity 
at a certain filler concentration. 

The usual explanation for such conductivity/filler 
concentration curves is as follows. In the region of low 
filler concentrations the filler, incorporated in the 
form of small particles with a different shape, is dis- 
tributed homogeneously in the volume of the insulat- 
ing host. There are no contacts between adjacent filler 
particles. With rising filler concentration, agglomer- 
ates of the filler particles begin to form. In these 
agglomerates the filler particles are in contact with 
each other. At a certain filler content, the growing 
agglomerates reach a size which makes it possible for 
them to touch each other; a compact one-, two- or 
three-dimensional network of the conducting phase 
within the insulating one is formed. As a consequence 
of the first appearence of the network, the conductivity 
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of the mixture shows a drastic increase to the high 
value of the conductive network. After the first con- 
ductive network is formed, the conductivity of the 
mixtures again shows a slow increase with growing 
filler content. This can be rationalized with a slightly 
improved quality of the conductive network. 

More important for the production of optimized 
conductive mixtures, i.e. compounds showing the 
jump in the conductivity at the smallest amount of the 
conductive filler possible for a certain mixture, are the 
physical and chemical factors determining the ap- 
pearence of the conductive networks. 

To understand the network formation on a scient- 
ific level, many so-called percolation models and 
equations have appeared in the literature. This review 
will present some of these models, with emphasis on 
the more prominent ones. In summary, there are still 
many open questions in connection with every pro- 
posed model or equation. The most promising models, 
from the engineer's point of view, are the structure- 
oriented ones which try to explain the conductivity on 
the basis of factors determined from the micro-level 
structure of the as-produced mixtures. 

2. Stat ist ical  percolat ion models 
Statistical percolation models [1 13] have occupied 
the majority of the literature about the electrical per- 
colation phenomenon, although the classical percola- 
tion theory was not concerned with the electrical 
conductivity in binary mixtures. On the contrary, the 
classical theory dealt with the problem of the penetra- 
tion of porous media by liquids [1]. In the meantime 
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Figure 1 Conductivity of a binary mixture, made of an insulating matrix (polyethylene) and a conductive filler (carbon black); dependence of 
the conductivity of the mixture on the filler content. 

TABLE I Fields of application for the ideas of the percolation theory after Zallen [-1] 

Phenomenon or system Transition 

Flow of liquid in a porous medium 
Spread of disease in a population 
Communication or resistor networks 
Conductor insulator composite materials 
Composite superconductor metal materials 
Discontinuous metal films 
Stochastic star formation in spiral galaxies 
Quarks in nuclear matter 
Thin helium films on surfaces 
Metal-atom dispersion in insulators 
Dilute magnets 
Polymer gelation, vulcanization 
Glass transition 
Mobility edge in amorphous semiconductors 
Variable-range hopping in amorphous semiconductors 

Local/extended wetting 
Containment/epidemic 
Disconnected/connected 
Insulator/metal 
Normal/superconducting 
Insulator/metal 
Nonpropagation/propagation 
Confinement/nonconfinement 
Normal/superfluid 
Insulator/metal 
Para/ferromagnetic 
Liquid/gel 
Liquid/glass 
Localized/extended states 
Resistor-network analogue 

these basic percolat ion considerat ions were used to 
explain many  other physical and chemical problems 
(see Table I). 

The break through  of the statistical percolat ion con- 
siderations in the area of conductive binary mixtures 
was made in the early 1970s, especially stimulated by 
the work of Kirkpatr ick and Zallen [1, 2]. 

2.1. The classical statistical percolation 
models 

2. 1.1. The mode l  o f  Kirkpatr ick and Zallen 
To obtain an estimate, of the percolat ion concentra-  
tions, according to the considerations of Kirkpatr ick 
and Zallen, it is usual to start with finite regular arrays 
of points and bonds (between the points). Typical 
examples  for such arrays are the simple cubic lattice 
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(s c), the face-centred cubic lattice (fc c) and the body-  
centred cubic lattice (b c c). Then, by computer  simula- 
tion, it is possible to determine the fraction of existing 
points or bonds according to various statistical laws. 
The next step is  to determine the part  of existing 
points or bonds, incorporated in a big cluster (within 
the array of points or bonds). The points or bonds in 
this cluster are in contact  with each other. It is easy to 
realize that  the percolation point  (which depends on 
the considered dimensionality) in these models is 
reached when the cluster first spans the relevant 
boundaries  of the underlying array. 

However,  the calculated percolat ion concentrat ions 
of points pSite o r  bonds, pbond a re  not  equal to the 
volumetric percolation concentrat ions normally 
found in experimental studies. Furthermore,  to obtain 
equations for the conductivity/filler concentrat ion 



curves, it is necessary to correlate the values of pSite or  
p~O~d with the specific electrical properties of the points 
or bonds. 

It is far beyond the scope of this work to show the 
exact way to reach these aims, therefore only the 
results of the considerations are given. Equation 1 cor- 
relates the conductivity of real mixtures with the vol- 
ume fraction of the conductive filler. 

c~ = ~ o ( V -  v~) ~ (1) 

where ~ is the conductivity of the mixture, ~o the 
conductivity of the filler particles, V the volume frac- 
tion of the filler, Vo = p~"% the volume percolation 
concentration, s a quantity determining the power of 
the conductivity increase above Vr and v the filling 
factor of the unit cell of a specific point arrangement. 

According to the literature [1, 2], the values of Vr 
and s should be dimensional invariants, i.e. they only 
depend on the dimensions of the lattice (one- or two- 
dimensional, etc.). Table II gives values of the volume 
percolation concentration for different dimensions 
(last column). Kirkpatrick gave the following values 
for the exponent s: 

s (bond percolation model) = 1.6 4- 0.1 
s (point percolation model) = 1.5 _+ 0.1. 
Studies supporting Equation 1 and the underlying 

theoretical assumptions span a wide range of mater- 
ials, including inorganic conductive mixtures [6], 
metal/polymer mixtures [7, 8] and, most of all, mix- 
tures made of polymers and carbon black (CB) or 
intrinsically conductive polymers (ICP) [14-21]. 

2. 1.2. The model of  Janzen, Aharoni 
and Gurland 

Janzen [3] derived his percolation equation on the 
basis of considerations, made by Aharoni [10] and 
Gurland [t 1]. The latter authors stressed the import- 

ance of the so-called "medium number of contacts 
(r~)" of adjacent particles. If this number takes the 
value rh = 2 in a real mixture, a one-dimensional 
(worm-like) conductive network should appear. Un- 
fortunately, the experimental results Of Aharoni and 
Gurland did not support their assumptions. 

Bearing in mind the ideas of Aharoni and Gurland, 
and using the results of the percolation calculations of 
Kirkpatrick and Zallen (pbon~ and the coordination 
number z; see Table II) Janzen emphasized the mean- 
ing of rh = 1.5 (three-dimensional; column 7, Table II) 
for the percolation process. Using this, his final per- 
colation equation takes the form 

1 
V~ - (2) 

1 + 0.67zpg 

where V~ is the volume percolation concentration, 
z the coordination number (number of nearest neigh- 
bours) in a specific lattice, p the density of the filler 
particles, and ~ the specific pore volume of the filler 
particles. 

Janzen found the calculated percolation concentra- 
tions in agreement with experimental values for 
a number of metal/polymer and CB/polymer mix- 
tures. 

2.2. The model of Scarsbrick 
Scarsbrick [12] proposed a statistical percolation 
model with no relation to the previous models. This 
model explains the conductivity of the mixtures, cL on 
the basis of four factors: 

(a) the specific conductivity of the filler par- 
ticles, cyc; 

(b) the volume fraction of the conductive phase, Vf; 
(c) the probability, Pn, of the development of an at 

least one-dimensional conductive network; this 

T A B L E I I Percolation theory and the problem of the electrical conductivity in binary mixtures after Zallen E1 ]; percolation concentrations 
pbOna, p~,~, m = z* pbO,d and Vo = v*p~ "e for different dimensionalities of the underlying point array 

Dimensionality d Lattice or pbO~d pcSite Coordination Filling factor z p  b~ vp~ ;t" = Vc 

structure z v 

1 Chain 1 1 2 1 2 1 
2 Triangular 0.3473 0.5000 6 0.9069 2.08 0.45 
2 Square 0.5000 0.593 4 0.7854 2.00 0.47 
2 Kagome 0.45 0.6527 4 0.6802 1.80 0.44 
2 Honeycomb 0.6527 0.698 3 0.6046 1.96 0.42 

2.0 4- 0.2 

3 fc c 0,119 0,198 12 0.7405 1.43 
3 b c c 0.179 0.245 8 0.6802 1.43 
3 s c 0.247 0.311 6 0.5236 1.48 
3 Diamond 0.388 0.428 4 0.3401 1.55 
3 r c p [0.27] b 0.637 [0.6] b 

4 s c 0.160 0.197 8 0.3084 
4 fc c 0.098 24 0.6169 
5 sc 0.118 0.14l 10 0.1645 
5 fc c 0.054 40 0.4653 

6 s c 0.094 0.107 12 0.0807 

1.5 +_ 0.1 

1.3 

1.2 

1.1 

0.45 4- 0.03 

0.147 
0,167 
0,163 
1.146 
[0.16] b 

0.16 i 0.02 

0.061 
0.060 
0,023 
0.025 

0.009 
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quantity is given by Equation 3 

p. = ~ l / v? /~  (3) 

and 
(d) the surface fraction of the conductive phase at 

the sample electrode boundary, C 2. 
The resulting equation has the form 

(5" = o 'cPn C 2  (4) 

Fig. 2, taken from the work of Scarsbrick, shows 
a comparison of Equation 4 with experimental con- 
ductivity values for a silver paint system. It is evident 
from this figure, that the assumptions of Scarsbrick 
can account only for the conductivity behaviour 
above the percolation point. Therefore, it cannot be 
used to predict the volume percolation concentration. 

particles, and f is the maximum number of contacts 
a particle can make with its neighbours. 

Fig. 3 shows the course of the normalized specific 
resistivity of a hypothetical mixture as a function of 
the filler content and the maximum number of con- 
tacts. Obviously, Bueche's equation can account for 
different drastic jumps in the conductivity, if the right 
number f is choosen. 

The comparison of the main parameters of Bueche's 
equation with the most important ones, according to 
the model of Kirkpatrick and Zallen, suggests some 
parallels between the two models. Indeed, as discussed 
by Zallen [1] in some detail, the theory of Flory is 
a rough estimate of the polymer gelation, being con- 
sidered as a classical statistical percolation problem. 
Therefore, the parallels between both models are not 
surprising. 

2.3. The model of Bueche 
Bueche [13] tried to explain the S-shaped conductiv- 
ity curves of binary mixtures on the basis of the 
concept of polymer gelation, as proposed by Flory. 
The transfer of Flory's assumptions to conductive 
binary mixtures resulted in an equation for the resis- 
tivity of the mixtures. 

P Of 
- ( 5 )  

Om (1 gf) Of Jr- g f c o g p  m 

where p is the resistivity of the mixture, Pm the resistiv- 
ity of the insulating material, Of the resistivity of the 
conductive material, Vf the volume fraction of the 
conductive phase in the mixture, cog the fraction of the 
conductive phase being incorporated in an infinite 
cluster; its value is determined by the subfactors f and 

(in a rather complicated manner), ~ is the probability 
for the appearance of a contact between neighbouring 
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Figure 2 Plot of surface resistivity of silver paint against volume 
fraction of silver: ( - - - )  theoretical curve for random distribution 
according to the theory of Scarsbrick [12], ( ) observed 
values. 

3. T h e r m o d y n a m i c  p e r c o l a t i o n  
m o d e l s  

Sumita and co-workers [22-25] and Wessling and 
co-workers 1-26-36] proposed thermodynamic per- 
colation models for CB/polymer and ICP/polymer 
mixtures, because of the serious disagreements be- 
tween the predictions of the statistical percolation 
models and the experimentally found percolation con- 
centrations. Both models emphasize the importance of 
the interfacial interactions at the boundary between 
the individual filler particles and the polymeric host 
for the network formation. As a consequence, these 
models interpret the percolation phenomenon as a 
phase separation process. 

3.1. The model of Sumita and co-workers  
The model of Sumita and co-workers [22 25] relies 
on the principles of chemical thermodynamics. The 
main assumption of these authors is concerned with 
the overall interracial free energies in the mixtures. It is 
assumed that the network formation begins at a cer- 
tain mixture-independent overall interracial free en- 
ergy, g*. This concept was adopted from the theory of 
the glass transition in polymers; the glass transition 
occurs at a universal polymer-independent value of 
the free volume within the polymer. 

o 
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0 0 .2  0 .4  vf 

Figure 3 Relation between the normalized resistivity and the vol- 
ume fraction of the conductive particles according to the theory of 
Bueche [13]; the resistivity drops at a critical volume fraction. 
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Bearing in mind the g*-concept, it is possible to 
explain the different volume percolation concentra- 
tions with different specific values of the interracial free 
energies (Fig. 4). If the specific interracial free energy 
has a low value, the volume percolation concentration 
(or the point, characteristic for the onset of the phase 
separation of the two phases) will be high. On the 
other hand, a greater value of specific free energy is 
accompanied by a lower volume percolation concen- 
tration. 

Other parameters important to the percolation pro- 
cess are the viscosity of the polymer melt and the 
diameter of the CB particles. According to the results 
of their experimental studies Sumita and co-workers 
say that the percolation process is easier to accom- 
plish with smaller CB particles. The viscosity of the 
polymers has an inhibiting influence on the "equilib- 
rium" phase separation process: the higher the value 
of the melt viscosity, the longer it will take until the 
mixtures reach their equilibrium structures. Therefore, 
it might be that the experimental investigations on 
a special mixture yield a higher volume percolation 
concentration than the "true" equilibrium value. 

The final equation of Sumita and co-workers has 
the form 

1 - V o  _ 3 
Vc g*R {[(7~ 7p - 2(7p7o) }] 

x (1 -- e a/,) + K0 e-ct/"} (6) 

where Vc is the volume percolation concentration, 7c 
the surface tension of the CB particles, 7p the surface 
tension of the polymer, g* the universal interfacial free 
energy, responsible for the onset of the network 
formation, K0 the interracial free energy at time t = 0 
(start of the mixing process), its value has to be deter- 
mined experimentally, c a constant of speed for the 
evolution of the universal interracial free energy, its 
value has to be determined experimentally, t the time 

g l 

0 N ~ 

Number of porhdes 

Figure 4 Schematic representation of the assumed relation between 
the interracial excess energy and the number  of carbon black par- 
ticles after Miyasaka et al. [25]; for N ~ N* the slope is constant  
depending on the exact interaction parameters, and it becomes zero 
for N >> N*, because the phase separation process takes place in the 
system. 

of mixing the two components, q the viscosity of the 
polymer matrix during the mixing process, and R the 
diameter of the CB particles. The experimental results 
of Sumita and co-workers are in agreement with 
Equation 6. 

3.2. The model  of Wessl ing and co -worke r s  
The model of Wessling and co-workers [26-36] is 
called "the dynamic boundary model". Basically, this 
thermodynamic percolation model is identical to that 
of Sumita and co-workers. However, as Wessling 
stated [29], his model involves two important hy- 
potheses, not considered in any other percolation 
model. First, his model explains the percolation pro- 
cess on the basis of the non-equilibrium thermo- 
dynamics. Secondly, the assumptions being involved, 
offer the opportunity to explain the percolation pro- 
cess vividly. 

To understand the model of Wessling it is helpful to 
know the main assumptions of it: 

(a) the CB particles are spherical; 
(b) below the percolation concentration all indi- 

vidual CB particles are fully covered by the surround- 
ing polymer host; 

(c) the distribution of the CB particles in the poly- 
mer matrices is non-homogeneous, i.e. the particles 
are somewhat concentrated in flat agglomerates; 

(d) each CB particles has a thin layer of adsorbed 
polymer; the thickness of the layer is determined by 
the kind of polymer. The structural and energetic 
properties of the CB particle surfaces have no influ- 
ence on this thickness; 

(e) the kinetics of the adsorption process (the 
formation of the adsorption layers) are equal to those 
appearing in the adsorption processes with low- 
viscosity fluids; 

(f) the adsorbed layers have unusual properties. 
The interactions between the CB particle surfaces and 
the polymeric hosts are so strong that it is impossible 
to destroy the layers during any processing step. Al- 
though the original polymer is in the liquid state, the 
polymer consumed in the layers is solid. The physical 
properties of the layers differ from the properties of the 
original polymer, i.e. a layer consists of a glassy, brittle 
material, having a low flexibility and being nearly 
incompressible. 

Using these assumptions, Wessling explains the per- 
colation process as follows (see Fig. 5). Just below the 
percolation point, all CB particles, including their 
adsorption layers, are distributed in the remaining 
polymer volume. They are arranged in flat agglom- 
erates. The agglomerates are distributed unevenly in 
the polymeric host. If one now mixes more CB par- 
ticles into the liquid polymer, the spaces of the flat 
agglomerates will become overfilled with CB particles. 
Therefore, as a consequence of compression forces, the 
adsorption layers of some of the CB particles have to 
be destroyed partially. These particles migrate to- 
wards each other until they are in electrical contact. 
This stage is reached, when the distance between the 
particle surfaces is equal or less than l0 nm [37]. The 
polymer of the destroyed regions of the adsorption 

289 



factor to recognize the appearence of the adsorption 
layers on each CB or ICP particle, respectively; 
1 _< ~ o / * 0  -< oo. 

With the aid of Equation 7, using surface tensions ~/c 
and Yv, estimated at room temperature, Wessling cal- 
culated the volume percolation concentrations for 
mixture, produced at temperatures > 100 ~ and un- 
der drastic shear conditions. Under these conditions, 
Wess]ing could predict the experimentally found per- 
colation concentrations exactly. 

Figure 5 Formation of a conductive network in polymer/carbon 
black polymer/ICP mixtures according to the assumptions of Wess- 
ling [30]. 

layers is transferred into non-layer polymer. CB par- 
ticles, with an intact adsorption layer, and about to 
contact the "conductive particle arrangements" have 
to apprOach such agglomerates from the outer sides 
for energetic reasons. 

After many of the original CB particles migrated 
towards each other, the flat agglomerates are trans- 
formed into two-dimensional conductive islands. 

The generation of a three-dimensional conductive 
network should proceed as follows. First, the two- 
dimensional conductive islands are still separated 
from each other. They also wear adsorption layers. 
But the interracial energies at the CB particles and 
adsorption polymer/polymer boundaries cause 
a phase separation process. This separation process 
leads to the three-dimensional network. 

The percolation equation, resulting from the con- 
siderations of Wessling and co-workers, aims at the 
calculation of the volume percolation concentration 
and has the form 

0.64(1 - c)d)o[ x ] 
Vo = ~ -  (,),~/2 + ypl/2)2 + Y (7) 

where Vo is the volume percolation concentration, 7c 
the surface tension of the CB and ICP particles, re- 
spectively, 7p the surface tension of the polymer, 1 - C 
the amorphous part (by volume) of the polymer 
matrix at room temperature, x (medium value 
2 = 0.451) a quantity, dependent on the molecular 
weight of the polymer; as Wessling discussed in a fur- 
ther paper [29], this quantity bears the non-equilib- 
rium character of his theory, y a quantity with an 
unknown basis (until now), and (b, qbo the volume 

4. G e o m e t r i c a l  perco la t i on  m o d e l s  
This class of percolation model was proposed to 
explain the percolation phenomenon in different dry- 
premixed and subsequently sintered mixtures of con- 
ductive and insulating powders. Slightly different 
models were proposed by Slupkowski [38], Rajagopal 
and Satyam [39], Malliaris and Turner [40] and 
Bhattacharya and Chaklader [41]. All these models 
assume that during the sintering process the insulating 
powder particles are deformed into more or less regu- 
lar cubic particles and the conductive powder particles 
are arranged in a more or less regular manner on the 
surfaces of these superparticles. The quantitative con- 
siderations involve, as the main parameters, either the 
particle diameters of the non-sintered powder par- 
ticles or the edge length of the sintered insulating 
superparticles and the diameter of the conductive 
particles. 

4.1. The model of Slupkowski 
The considerations of Slupkowski [38] were based an 
the dry-premixed mixtures and included the diameters 
of the insulating and conducting particles as the main 
influence factors. Fig. 6 shows the arrangement of the 
conductive particles on the surfaces of the insulating 
ones according to the assumptions of Slupkowski. 

Slupkowski's considerations resulted in the equation 

d([x] + P) 
c~ = 2rcc~ t Dln{1 + 1/(([x] + 1)00} (8) 

where c~ is the conductivity of the mixture, c~f the 
conductivity of the conductive powder, D the diameter 

g =  ( [xJ + tJ d 

Figure 6 Model of adjoining insulating particles surrounded by 
a conducting layer according to Slupkowski [38]. 

290 



I ix] L k l  -- Vf) - 1 2d (9) 

10 o 

which is the number of totally filled sublayers of con- 
ductive particles, and Vf is the volume fraction of the 
conductive powder. 

Fig. 7 shows that Slupkowski's equation can, in 
principle, account for the variation of the percolation 
concentration if the ratio of the particle diameters is 
changed. 

4.2. The model  of Rajagopal  and Satyam 
The considerations of Rajagopal and Satyam [39] are 
valid for a wax/graphite system. For the derivation of 
their conductivity equation they substituted the real 
material structure with a hypothetical one. In this 
model structure, the wax particles consist of cubic 
grains of edge length D. The graphite particles, being 
slightly deformed, cover the surfaces of the wax par- 
ticles and have the diameter d. Fig. 8 shows the ele- 
mental cell of the hypothetical structure. 

The final equation of Rajagopal and Satyam has the 
form 

2 r ( V f 3 D  - 4d)(3D - 2d) 
(Y = O'f D 2 d (10) 

where cy is the conductivity of the mixture, ~f the 
conductivity of the conductive particles, D and d, are 
already defined in the text, Vf the volume fraction of 
the conductive powder, and r the radius of the contact 
area between adjacent conductive particles. 

l0-s 10 -2 10-1 
g 

YO -~ 

10 4 

10 -12 

10 -76 

/O -2o 

Figure 7 Dependence of the relative specific conductance on the 
volume fraction, v, of the conducting component for various ratios 
of insulating and conducting particle diameters according to Slup- 
kowski [38]. 

of the insulating powder particles, d the diameter of 
the conductive particles, P the probability for the 
occurrence of a network, only consisting of conductive 
particles; its value depends on the statistical laws, used 
for the determination 

Figure 8 Cross-section of the elemental cell of a composite material 
according to Rajagopal and Satyam [39]. 

4.3. The model  of Mal l iar is  and Turner  
The model of Malliaris and Turner [40] is the most 
prominent geometrical percolation model. As in the 
foregoing model of Slupkowski and the following one 
of Bhattacharya and Chaklader, the considerations of 
these authors are based on the dry-premixed, non- 
sintered structures of the mixtures. Malliaris and 
Turner derived two equations for the volume percola- 
tion concentration. The first one applies to the volume 
concentration, V,, characteristic of the onset of the 
network formation. The second equation allows the 
calculation of the volume concentration, VB, charac- 
teristic of the end of the drastic increase of the con- 
ductivity. 

t i ) 1  (lla) 
VB = 100 0D 

+ 

VA = 0 . 5 p c V B  (llb) 

where VA, and VB are defined in the text, 0 is a quantity 
to estimate the arrangement of the conductive par- 
ticles on the surfaces of the insulating ones; the follow- 
ing values are given: hexagonal arrangement 0 = 1.11; 
cubic arrangement O = 1.27; triangular arrangement 
0 = 1.375, D is the diameter of the insulating powder 
particles, d the diameter of the conductive powder 
particles, and Pc the first non-zero probability for the 
occurrence of infinitely long bands of conductive par- 
ticles on the surfaces of the insulating particles, the 
following values are given: hexagonal array: Pc = 1/3; 
cubic array: Po = 1/2; triangular array Pc = 2/3. 

Comparison of experimentally determined percola- 
tion values with predicted ones, according to Equa- 
tion 1 la and b, showed Malliaris and Turner that their 
assumptions were insufficient to predict the percola- 
tion concentrations in conductive binary mixtures. 
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4.4. The mode l  of Bha t t acha rya  
and  Chaklader  

Bhattacharya and Chaklader stated [41] that their 
percolation considerations are an optimization of the 
model proposed by Malliaris, Turner and their co- 
workers earlier. Therefore, the equations of Bhat- 
tacharya and Chaklader also deal with the volume 
percolation concentrations VA and Vs. 

2.99 d/D 
VB = (12a) 

1 + (2.99 d/D) 

V A = 0.5V B (12b) 

where the parameters have the same meanings as 
those in Equation 1 la and b. Although the predictions 
for the percolation concentrations according to Equa- 
tion 12a and b gave better estimates than Equation 
l la and b, the disagreement is still typically 
_+ 15% 20% (with respect to the experimental value). 

The one consists of a conductive core with an insulat- 
ing shell, the other has a reverse structure (Fig. 9). 

The details of these two substitution elements are 
very freely eligible. The only parameters to be deter- 
mined exactly, are the core volume fractions, 7A, B, of 
the two elements. These volume fractions depend on 
two so-called structural cross-over concentrations, ~1 
and %. The values of al and a2 are always found in 
the range [0, 1] and ~1 is always smaller than a2 [43]. 

With the aid of: 
(a) the structural crossover concentrations ~t,2; 
(b) the core volume of  the substitution elements 

YA, B; 
(c) the volume fractions of the insulating and con- 

ductive powders f.,b; 
(d) the volume fractions of the substitution ele- 

ments FA,B; and 
(e) the specific conductivities of the two powders 

~A,B; the conductivity of the mixture can be assessed 
using Equation 13a 

1 [ (3"A + 2 (TB + ~/A((TB --  O'A) IF A 

I (7 B + 2(7 A + 7B(O'A -- O'B) 
+ (2~ ~- O'A)((Y B -t- 2erA) + 2--~--B((~2---~)(O" B - -  (YA)J FB 

(13a) 

5. Structure-oriented percolation 
models 

In different scientific groups around the world, it is 
fully accepted that a certain reproducible percolation 
concentration can only be found when the conductive 
mixtures are prepared via the compression moulding 
route. This preparation technique is one (of a few) 
ensuring the lack of any inhomogeneity in the distri- 
bution of the conductive phase. Furthermore, in the 
case of a certain processing method, differences in the 
exact route of preparing the mixtures give rise to 
different percolation concentrations or conductivities 
[29, 42]. 

Recognizing these problems, Yoshida [43], Nielsen 
[44], McCullough [45, 46] and Ondracek and co- 
workers [47-51] proposed conductivity models on the 
basis of parameters, which have to be determined from 
the micro-level structure of the mixtures after the final 
processing step. It is obvious that a detailed substitu- 
tion of the real material structure by a theoretical 
model structure is needed for the determination of 
such parameters. Furthermore, it is a fact that the 
build up of a theoretical substitution structure re- 
quires a large computer and a structure-analysis plant. 

with 

and 

7B -- fB 
F A --  (13b) 

~/A - -  f A  
FB -- (13C) 

YA + YB -- 1 

The determination of 7A,, as a function of the para- 
meters ~t, 2 and the determination of %,2 themselves, 
is described by Yoshida [43]. 

A comparison between experimental results and the 
predictions, according to Equation 13a, gives a good 
correlation as is seen in Fig. 10. 

5.2. The models of Nielsen, McCullough 
and Ondracek 

Nielsen [52], McCullough [45, 46] and Ondracek 
[47 51] made a proposal to explain the electrical 
conductivity in binary mixtures in the context of the 
general transport properties in materials. The general 
class of transport properties includes the electrical 
conductivity, the thermal conductivity, the dielec- 
tric and magnetic properties and the permeablity 
properties. 

5.1. The mode l  of Yoshida  
Yoshida [43] considered the percolation process of 
mixtures, equal to those discussed in Section 4. A fur- 
ther precondition of his work is that the mixtures have 
to be homogeneous. The structures of such mixtures 
can be substituted by two effective spherical elements. 
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5.2. 1. The model of  Nielsen 
Nielsen proposed a model for the conductivity of 
metal/polymer mixtures [52]. The most important 
parameters for calculating the conductivity of such 
mixtures are the length-to-diameter ratio of the con- 
ductive filler and the coordination number of the filler 
in the mixture. The final equation of Nielsen's consid- 
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Figure 9 Substitution elements for the real materials structure ac- 
cording to the conductivity theory of Yoshida [43]. (a) Complex 
cells of Types A and B as structural elements. (b) Specification of 
the cells on the percolation cluster (black). 

"erations has the form 

1 + A B O f  
(14a) 

with 

B = of / (Opoly-  l) (14b) 
~f/(%o,,  + A) 

1 --2 Pf~ qt ~ 1 + \ ~ ] P y  (14c) 

A = f ( L / D ;  packing of the conducting particles) 
(14d) 

cyc is the conductivity of the mixture, O'poly the con- 
ductivity of the polymer, cyf the conductivity of the 
metal, ~f the volume fraction of the filler, Pf the 
coordination number of the metal within the polymer, 
L the length (medium value) of an individual filler 
particle, and D the diameter (medium value) of an 
individual filler particle. 

It is worth mentioning that Nielsen proposed Equa- 
tion 14 also to explain the modulus of metal/polymer 
mixtures [53]. 

Bradbury and Bigg [54] and Berger and McCul- 
lough [46] examined the applicability of Equation 14 
in the case of aluminium/polymer composites. Their 
results contradict the applicability of Equation 14 for 
the explanation of the electrical conductivity behavi- 
our of binary mixtures. 
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Figure 10 Plot of semi-logarithmic plotting of the normalized con- 
ductivity, cy (with respect to the intrinsic conductivity of the con- 
ductive filler, cyf) against the volume fraction f, of the conductive 
filler according to Yoshida [43]. 

5.2 .2 .  T h e  m o d e l  o f  M c C u l l o u g h  
McCullough [45] proposed the use of a transport 
equation, once derived for the transport  properties in 
homogeneous materials, for the explanation of the 
transport properties of binary mixtures with polymers. 
To adjust the equation to the growing conductive 
networks in the mixtures, McCullough defined a so- 
called chain length factor, Li. The subscript i can 
adopt the values i =  1, 2, 3 and describes the ditrec- 
tions of a cartesian coordination system. The L~ values 
have to be determined by quantitative analysis of the 
structure of the mixtures. The exact procedure for 
doing this is described in the work of Berger and 
McCullough [46]. 

With the aid of the three Li values, McCullough 
developed an equation for the conductivity of the 
mixtures, suitable to account for the anisotropy of the 
conductivity of the mixtures. The equation has the 
form 

(~i = Vpoly CYpoly --~ vf (Yf 

)2iUpoly/)f((s  f - -  O-poly) 2 

Vpoly, if~poty -~- Vf,  i (y f 
(15a) 

where ~ is the conductivity of the mixture in direction 
i, ~poly the conductivity of the pure polymer, ~f the 
conductivity of the filler particles, Upoly the volume 
fraction of the polymer, vf the volume fraction of the 
filler particles, 

Vpoly, i : (1 - -  ~ ' i ) ' / ) po ly  -~- ~" i 'Uf  (15b) 

V f ,  i = )~i'Upoly + (1 -- Xi)'Vf (15C) 

and 

Vpoly, i -~- Vf,  i = 1 (15d) 
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For the case of a homogeneous mixture (compres- 
sion moulded plates), Equation 15a can be reduced to 
Equation 16a. 

1 

O 
I 1 1 1 V o,,(1 - [k]) + 

(~poly I .  Vpoly ) o f  

Upoly -~ 1-)~.] Vpoly(1 -[- gpoly ) 
Vpo~y vf (16a) 

where ILl  is the spatial medium value of the X~ values 
and 

Vpoly = Opoly(1 - -  [ ~ ] )  + [ ~ l O f  (16b) 

Berger and McCullough [46] found their predic- 
tions "in qualitatively good agreement with the experi- 
ment" for a polyester/aluminium system (see Fig. 11). 

5.2.3. The model of Ondracek 
The considerations of Ondracek and co-workers 
[47-511 are only valid for mixtures having a statistical 
structure and reaching their equilibrium states. I f  

those preconditions are fulfilled, it is possible to un- 
derstand the conductivity of the mixtures as a super- 
position of the conductivities of the pure components. 
To reach singular equations for interpenetrating struc- 
tures and for mixtures with an embedded structure, 
respectively, it is necessary to substitute the real struc- 
tures with model structures. The model structures 
involve the conductive phase in the shape of elliptical 
eggs. Then, the characteristic parameters of the eggs, 
i.e. a shape factor, Ff, and an orientation factor, cos ~f, 
allow the calculation of the conductivity of the 
mixtures. 
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Figure l l  Comparison between the measured a.c. conductivity in 
a polyester/aluminium powder mixture at 20 ~ and t0 kHz and the 
predictions of McCullough [46]. 
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Mixtures, having an embedded structure 

( ? ) m  O'f --  O ( ~  ~f-Q2(3"f X) 9 (17a) 
1 - -  Cf . . . . .  

Of -- O'in \(Yin -- H" Of// 

where o is the conductivity of the mixture, oi,1 the 
conductivity of the insulating phase, of the conductiv- 
ity of the conductive phase, % the volume fraction of 
the insulating phase = 1 - % cr the volume fraction 
of the conducting phase, 

Ff(1 - 2Fr) 
m = 

I --  (l --  Ff)COS2~f -- 2Ff ( t  -- cosZ~zf) 

(17b) 

1 - (1 - Ff)cosecte - 2Ff(l  - coseTf) 

and 

q = m +  

2Ff(1 - cos2%) + (1 --  F f ) c o s 2 ~ f  
(17c) 

(1 -- Ff )2Ff  
- 1  

2Ff(1 --  COS 2 (xf) + (1 --  Ff)cos20~f  
(17d) 

Mixtures, having an interpenetrated structure 

[2 co  f] Cf(O'f --  O) (1 -- COS2~f) -~ 
~ f +  G 

= -- Cin((~in -- ~ ~ @COS2~f)(3" n t- COS~ 0~f] (18) 

The parameters in Equation 18 have already been 
explained in context with Equations 17a-d. 

The procedure to obtain reliable values for the 
shape and the orientation factors is described by On- 
dracek and co-workers [47, 50]. 

A comparison of experimental conductivity curves 
in binary mixtures with the predictions of Equations 
17 and 18 shows that a good correlation is found in 
most systems, but there are also examples which seem 
to contradict the conductivity equations of Ondracek 
(see, for example, Figs 12 and 13). 

6. Limitat ions of the models 
Having summarized the models available for the pre- 
diction of the conductivity or the percolation concen- 
tration of filled systems, their applicability and limita- 
tions will be discussed. Before doing this it should be 
emphasized that the above mentioned models repres- 
ent only a small number of the wide variety of models 
proposed for the explanation of the conductivity beha- 
viour of binary mixtures. This is especially true for the 
groups of the geometrical and structure-oriented 
models. For information in this connection the reader 
is referred to the works of Bhattacharya and Chak- 
lader [411, Berger and McCullough [46], Ondracek 
[491 and Yoshida [43]. Furthermore, it should be 
stressed that some of the different models have been 
described in some detail to enable the reader to under- 
stand the general way of thinking when deriving equa- 
tions for the conductivity or the percolation concen- 
tration on the basis of a special set of assumptions. 
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Figure ]2 Comparison of the experimentally found conductivities 
in Fe/F%C mixtures with the predictions of the conductivity model 
of Ondracek [51]. 
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Figure 13 Comparison of the experimentally found conductivities 
in Bi/Ga mixtures with the predictions of the conductivity model of 
Ondracek [51]. 

(c) interactions between the conductive and insu- 
lating components; and 

(d) the preparation method of the mixtures. 

The correct-mixture-dependent choice of these four 
parameters is crucial for the quality of any estimate 
about the conductivity or the percolation concentra- 
tion. Consequently, the following discussion deals 
with the adequacy of the assumed parameters a -d  
in the different percolation models and the question: is 
it possible to explain all experimental results with the 
aid of only one model. 

It is seen in the description of the percolation and 
conductivity models that most of the authors assume 
a spherical geometry for the individual conductive 
particles. However, it is well known that the more 
important conductive fillers, like metal fibres, metal- 
lized glass fibres, metal flakes and, in particular, CB 
and ICP particles, have a rod-, disc- or grape-like 
geometry. Figs 14 and 16 show the morphology of 
polyaniline particles (polyaniline is a prominent ICP) 
and CB aggregates, respectively. 

The discrepancy between the assumed filler particle 
geometry and the real appearance of the conductive 
particles is a serious restriction for the applicability of 
the concerned models. It gives rise to the question 
what conductivities or percolation concentrations 
would result from the quantitative considerations, if 
a non-spherical geometry of the filler particles is as- 
sumed? Pike and Seager [4, 5] and Yamaki et aL [9] 
focused their work on this question for the case of the 
statistical percolation model of Kirkpatrick and Zal- 
len. Both groups showed that the obtained percola- 
tion concentration depends strongly on the shape of 
the filler particles; the more irregular the shape of the 
conductive particles, the lower the percolation con- 
centration. With respect to the other models, assum- 
ing a spherical geometry of the conductive particles, 
no investigations concerning the effect of the particle 
geometry have appeared in the literature until now. 
Nevertheless, it can be speculated on the basis of the 
original papers of the geometric and thermodynamic 
models that a more complicated structure of the con- 
ductive particle would make it impossible to obtain 

Although the above summary of the different 
models shows that they are derived for rather different 
mixtures, it is easy to deduce that, independent of the 
special case, the following parameters are most im- 
portant for the derivation of the individual equations: 

(a) the size and the geometry of the conductive 
particles; 

(b) the amount and the distribution of the con- 
ductive particles in the insulating matrices; 

Figure 14 Transmission electron micrograph of polyaniline par- 
ticles, resulting from the well-known HCl-preparation route [82]; 
x 15 600; Lux [83]; both the needles and the grape-like aggregates 
are typical of this intrinsically conductive polymer. 
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a reliable estimate for the conductivity or the percola- 
tion concentration of the mixtures. 

The true structure of the conductive particles is also 
the basis for speculations about the experimentally 
determined percolation concentrations in CB- and 
ICP-filled polymers [42]. The grape-like structure of 
these conductive fillers is accompanied by the appear- 
ance of closed and non-closed holes in the CB and 
ICP aggregates. The closed holes in the aggregates are 
empty or include a gas or a fluid, typical for the 
specific synthesis conditions. However, the calculation 
of the volume concentration of the conductive phase 
in these cases assumes a structure of the conductive 
phase in which no closed holes appear. So, the experi- 
mental error in the calculation of the true volume 
concentration of the conductive phase might be one 
reason for the difference between the theoretical and 
the experimentally found percolation concentrations. 

A similar argument is true for uncertainties in the 
measured conductivities. Normally, the description of 
the measurement cell for the conductivity determina- 
tion is not included in an article dealing with conduct- 
ive binary mixtures. On the contrary, it is usual to find 
inexact statements like "the conductivity was estim- 
ated using the standard four-point technique" [19, 
55]. Such statements are not beneficial to allow a com- 
parison between the results of different groups. Every- 
body, who has ever tried to measure the conductivity 
of filled systems over a typical range of ten decades of 
the conductivity, knows the serious problems in 
measuring very small and very high conductivities 
with one measurement circuit (avoidance of antenna 
and EMI effects and other problems). For this reason, 
the experimental error in the measurement of the 
conductivity must not be underestimated. A value of 
_+ 50% of the quoted (measured) value might be the 

usual error. 
The effect of the absolute size of the conductive 

particles on the conductivities or the percolation con- 
centrations of binary mixtures somewhat interferes 
with those of the particle geometry and the interac- 
tions between the conductive and insulating compon- 
ents. For  the case of fibre-like fillers (the fibre 
dimensions are in the upper micrometre range) the as- 
sumption of a certain aspect ratio of the fibres is 
equivalent to a minimum size of the fibres. The cor- 
relation between the aspect ratio and the size of the 
fibre results from the synthesis route of the fibres; as 
the synthesis route determines the fibre diameter, 
a given aspect ratio can be correlated with the size of 
the conductive particle. From the correlation of size 
and geometry in the case of fibre-like conductive par- 
ticles it follows that a lower percolation concentration 
might be obtainable with larger filler particles. Con- 
trary to the last statement are the experimental results 
on CB-filled polymers [56-58]. In these cases, where 
the filler dimensions are in the sub-micrometre range 
( < 500 nm), it is shown that lower percMation con- 
centrations are obtained, if the diameter of the prim- 
ary CB particles is reduced. It should be mentioned 
that the diameter of the primary CB particles is not 
identical with the size of the CB aggregates appearing 
as the conductive particles, but means the diameter of 
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an individual grape of the grapeqike aggregate. As- 
suming a given overall size of the CB aggregates, it 
follows that a lower percolation concentration results 
from an increase in the surface area of the filler par- 
ticles and, consequently, from an increase in the inter- 
actions between the filler particles and the insulating 
host. The different behaviour of mixtures, contain- 
ing CB particles or conductive fibres, with respect to 
variations in the "particle" size, therefore seem to 
contradict the idea of a universal, particle-shape inde- 
pendent percolation model. 

The problem of a reasonable explanation for the 
unusual and extremely non-linear dependence of the 
conductivity on the amount of the conductive phase 
has been the origin of the whole scientific work on the 
conductivity of binary mixtures. The central problem 
might be described as follows: Is it possible to explain 
the conductivity behaviour with a mathematical con- 
cept that is independent of a special mixture, or could 
only a detailed description of the distribution of the 
conductive phase, as it results from the preparation 
method and the interactions between the conductive 
and insulating phases, account for the conductivity 
behaviour of different mixtures? 

Kirkpatrick and Zallen have shown that it might be 
possible to explain certain conductivity/filler concen- 
tration curves with the aid of a mixture-independent 
mathematical concept. However, their derivation is 
speculative rather than precise with respect to mix- 
tures with an irregular structure. 

It emerges from Table II and the description of the 
way in which Kirkpatrick and Zallen obtained their 
universal percolation concentration, Vc, that they as- 
sumed a regular array for the conductive particles. On 
this basis they deduce Vc by multiplying p~i~e with the 
filling factor of the elemental cell of the assumed 
particle array. Furthermore, Table [I suggested that 
Kirkpatrick and Zallen obtained the Vr value for the 
case of an irregular arrangement of the conducting 
particles in the same way. However, this is not true. 
On the contrary, these authors obtained the Vc value 
for the irregular arrangement by postulating that the 
Vc value of the regular case is also valid for the ir- 
regular arrangement, simply because all regular ar- 
rangements give the same Vc value. Assuming this, 
Kirkpatrick and Zallen obtained the p2ite value for the 
irregular array of the conducting particles from the 
quotient Vc/v = 16 vo1%/0.6. Obviously this way of 
obtaining V~ value for the irregular array of the con- 
ductive particles has no scientific root and is therefore 
not acceptable. 

Further discussions concerning the model of Kirk- 
patrick and Zallen deal with the choise of the 
p~i,e values for the calculation of V~ instead of the 
pcbOnd values or a combination of a site and bond 
percolation. This problem was investigated by Pike 
and Seager [4, 5] and by Janzen [3]. It leads the latter 
author to the derivation of his own percolation con- 
cept on the basis of the pbond values. 

Aside from these uncertainties of the "classical" 
percolation considerations of Kirkpatrick and Zallen, 
many experimental investigations have appeared in 
the literature, manifesting that many interactions be- 



tween the insulating and conductive particles might 
appear in real binary mixtures and that the mixing 
process of the constitutents of a mixture, as well as any 
post-mixing step, have a serious influence on the con- 
ductivity and the percolation concentration of a mix- 
ture [-22-29, 38-40, 43, 56-77]. For example, the 
following results are quoted: Bigg [59] examined the 
influence of the CB structure, the morphology of the 
polymeric matrices and the processing parameters on 
the conductivity of CB-filled polymers. He found 
a strong influence on the polymeric host and stated: 
"Segregation processes leading to an uneven distribu- 
tion of the filler particles are beneficial for lower 
volume percolation concentrations. One such process 
is the crystallization of the polymeric host". Harbour 
and Walzak [60, 75] probed CB/polymer mixtures 
with the aid of the electron spin resonance (e.s.r.) 
method. They found that the mixing process of the 
two materials resulted in an electrical charging of the 
CB particle surfaces. Such permanent surface charges 
might stimulate interactions between the CB particles 
and the polymeric host. Boluk and Schreiber [66] 
focused their work on the influence of reactive surface 
groups on the conductive particles. They found that 
attractive forces between the conductive particles and 
the matrices facilitate the mixing process of the two 
materials. Therefore, surface groups might hinder the 
formation of a "pure" network of the conductive par- 
ticles. Medalia [56], Miyasaka et al. 1-22 25] and Gilg 
and Bode [57, 581 studied the percolation process in 
CB/polymer mixtures systematically. They deduce 
that the following factors are important for the forma- 
tion of conductive networks: 

(a) the rheology (viscosity) of the polymer during 
the mixing process and in post-processing steps; 

(b) the wettability of the CB particles for the 
polymers; 

(c) the crystallinity in thermoplastic polymers; 
(d) the details of the solidification process after the 

mixing process and in post-processing steps; 
(e) the thermodynamic miscibility of the CB par- 

ticles with different polymers in polymer blends, e.g. in 
acrylic-butatiene styrene (ABS); and 

(f) the parameters of the mixing process and of 
post-processing steps. 

Noguchi et  al. [77] described a new technique for 
dispersing metallic particles into a polymer. The char- 
acterization of the resulting composites comprised 
dynamic-mechanical investigations (DMA) and 
showed that a new phase appeared in the composite 
(probably at the metal/polymer boundary). The ex- 
perimental studies of Wessling [27-29] on CB/poly- 
mer and ICP/polymer mixtures also give indications 
for interactions of the constitutents of the mixtures, 
because 

(i) the density of the mixtures does not rise propor- 
tionally with rising filler content, and 

(ii) the gas permeability of the mixtures rises dras- 
tically in the region of the network formation. 

Bayer et aI. 1-69 71] investigated the effect of the 
injection moulding technique on the distribution of 
carbon black in high-density polyethylene. It becomes 

evident that this processing technique results in a to- 
tally irregular arrangement of the carbon black par- 
ticles in the polyethylene matrix; the particles are 
arranged in axial channels and are (at least partly) 
separated from the polyethylene matrix. The aniso- 
tropic distribution of the CB particles is accompanied 
by a higher conductivity and a lower percolation con- 
centration (in the direction of preferred orientation) 
when compared with compression moulded parts. 

Fig. 15 is taken from the work of Malliaris and 
Turner [40]. It shows the geometry and arrangement 
of the conducting and insulating particles before and 
after the sintering process. Apparently, sintering the 
dry-premixed powders leads to a strong change in the 
geometry of the insulating particles. Furthermore, the 
arrangement of the conducting particles at the bound- 
aries of the insulating ones is somewhat changed. 

The above description of some of the different inter- 
actions between the constitutents of a binary mixture 
and the obvious influence of mixing and post-mixing 
processes strongly contradict a mixture-independent 
mathematical explanation of the conductivity and is 
the basis for the thermodynamical and structure- 
oriented models. Moreover, it seems speculative to 
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Figure 15 Schematic representation of the compaction process in 
mixtures made of polymeric particles and smaller particles of metal 
according to the assumptions of Malliaris and Turner E40]. 

297 



explain the conductivity of a sintered mixture on the 
basis of the diameters Rv and Rm of the insulating and 
conducting particles, respectively, as proposed by 
Malliaris and Turner, Slupkowski, and Battacharya 
and Chaklader. 

The thermodynamical percolation model of Sumita 
and co-workers [22 25] was the first attempt to ac- 
count for interactions between the constitutents of 
CB/polymer mixtures. So, it is no wonder that the 
derivation of the final percolation equation includes 
some assumptions which are too rough for a general 
thermodynamical explanation of the percolation phe- 
nomenon. It has been already mentioned that CB 
particles have a grape-like appearance and the distri- 
bution of the particles depends on the parameters of 
the mixing and post-mixing process. Nevertheless, 
Sumita and co-workers assumed the CB particles to 
be spherical and concentrated their considerations on 
compression moulded materials. Possible interactions, 
not considered in the work of Sumita and co-workers, 
are the crystallization of the insulating phase during 
cooling the mixture from the processing temperature 
to room temperature, the different miscibility of the 
conducting particles with the polymeric constitutents 
of polymer blends, and the appearence of an inter- 
phase at the insulating matrix/conductive particles 
boundary. To obtain an estimate for the percolation 
concentration in mixtures with normally semi-crystal- 
line polymers, Sumita and co-workers suppressed the 
crystallization by rapid cooling of the mixtures in 
ice water. 

A large experimental error in the considerations of 
Sumita and co-workers might be caused by the way in 
which they calculate the specific interfacial excess en- 
ergy. To obtain an estimate for this parameter, the 
authors used Equation 19 

K = Yr + 7v -- 2(7c7p) 1/2 (19) 

where K is the specific excess energy, 7r the surface 
tension of the conductive particles, and ]/p the surface 
tension of the polymer matrix. Equation 19 was ori- 
ginally proposed by Fowkes [443 and is valid, in 
a strict sense, only for non-polar polymers, i.e. hydro- 
carbon polymers, like polyethelene and polypropyl- 
ene. However, Sumita and co-workers used it also for 
the calculation of the percolation concentration in 
CB/polymer mixtures with more polar polymer matri- 
ces (PMMA and nylon). 

Wessling and co-workers [26 36] proposed a per- 
colation model which is able to account for the exist- 
ence of an interlayer at the CB/polymer boundary, 
with the properties of the layer being different from the 
properties of the remaining polymer. Unfortunately, 
most of his other assumptions, concerning different 
parameters and the propagation of the percolation 
process, seem very speculative. First, Wessling as- 
sumed the CB and ICP particles to be spherical. As is 
shown in Figs 14 and 16 this is not true for these 
conductive fillers. Furthermore, if it was possible for 
Wessling to account for a different geometry of the 
conductive particles, his assumption of an interlayer 
around each conductive particles is still not true. Fig. 
16b shows in the middle of the lower half, a region of 
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the CB/polymer mixture, in which the CB particles 
appear isolated from the rest of the mixture. Such 
regions with pure conductive filler result from the 
mixing procedure and are due to the problem of effect- 
ively destroying the CB agglomerates (a CB agglomer- 
ate is constituted of several hundred to thousand CB 
aggregates) in the shear stress field of the mixing unit. 
Second, Wessling used the same equation as Sumita 
and co-workers for the calculation of the free energy of 
the filler/polymer interactions; the values of the sur- 
face tensions were measured at room temperature. 
Therefore, it is hard to believe that the equation and 
the values of the surface tensions could account for the 
interactions between the filler particles and the poly- 
mer during mixing at temperatures ~> 100~ and 
under drastic shear conditions. Third, Wessling postu- 
lated that the individual filler particles are totally 
separated from each other before percolation takes 
place. It has already been shown that this assumption 
interferes with the problem of effectively distributing 
the CB or ICP agglomerates during the mixing pro- 
cess. Fourth, Wessling's assumption of a solid inter- 
phase of polymer at temperatures somewhat above the 
melting temperatures of the respective polymers is not 
acceptable. If this interphase is amorphous, as as- 
sumed by Wessling, it should soften before melting of 
the polymer crystals takes place. Fifth, Wessling used 
the factor "1 C", i.e. the amorphous part of a semi- 
crystalline polymer, for estimating the influence of 
different crystallization processes in the polymer 
matrix. However, as the amorphous part of a semi- 
crystalline polymer has no relation to different nucle- 
ation and growth mechanisms, it is unsuitable to 
account for the effect of the crystallization on the 
percolation concentration. Sixth, Wessling claimed 
that the density/filler concentration curves, measured 
by himself, are in accordance with his theory. How- 
ever, he has not derived the theoretical density/filler 
curves on the basis of his model until now. The latter 
work was done by Lux [78]. Fig. 17 compares the 
experimental results of Wessling with the theoretical 
density curves for a CB/polyethylene system. It is seen 
in this figure that the theory of Wessling cannot ac- 
count for the experimental density curve. 

Another way to account for the influence of differ- 
ent interactions between the constitutents of conduct- 
ive binary mixtures is offered by the structure-oriented 
conductivity models. All models of this group evaluate 
the interactions in an integrated manner, i.e. by means 
of an analysis of the micro-level structure of the as- 
processed mixtures. It follows immediately from the 
concept of such models that they do not include pre- 
conditions for a certain shape and size of conductive 
filler. This is an important advantage of these models. 
However, some of the models are based on assump- 
tions which are not fulfilled in any case. The best 
examples of this are the models of Yoshida [43] 
and Ondracek [47-51]. Both authors assumed ~i 
homogeneous structure of the mixtures. Furthermore, 
Ondracek demanded the thermodynamic equilibrium 
state and the existence of only two phases in the 
mixtures for his considerations. Material structures, 
having these features, might result from sintering and 



Figure 16(a, b) Transmission electron micrographs of a carbon 
black/polystyrene mixture just above the percolation point (about 
11 w t %  carbon black): x26500; Pohl and Lux 1-81]. (c) See (a) 
x 65 120, 
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Figure/7 Calculated and measured density/filler concentration 
curves for mixtures of polyethylene and a carbon black according to 
the results of Lux [78] and Wessling [29]; ( [] ) diameter of the CB 
particles 50 nm, lower density bound; (O)  diameter of the CB 
particles 50 nm, upper density bound: ( �9 ) density/filler curve meas- 
ured by Wessling. 

compression moulding processes but not from extru- 
sion or injection moulding processes. Moreover, the 
absence of interlayers at the boundaries between the 
conductive filler particles and the insulating matrices 
in the model of Ondracek gives a further serious 
restriction to his model. It has already been mentioned 
[60, 66, 75, 77] that different chemical surface groups 
and physico-chemical processes during the prepara- 
tion of the mixtures might give rise to the appearance 
of interlayers, i.e. a third phase in the mixtures. 

The absence of specific interaction parameters in 
the semi-empirical conductivity models is responsible 
for their non-applicability in predicting the behaviour 
of a mixture when changing one or the other para- 
meter. So, the structure-oriented models are not able 
to explain the propagation of the percolation process 
on the ground of physical and chemical laws. 

The greatest difficulty for all structure-oriented mo- 
dels arises from the necessity of a quantitative analysis 
of the micro-level structure. Independent of the system 
under investigation, such an analysis demands a soph- 
isticated plant for preparing the samples and a large 

299 



computer, able to account for all the different grey- 

spots in a picture of a sample. Fig. 16, showing the 
micro-level structure of a CB/polystyrene (PS) mixture 
just above the "percolation point", has been included 
in this review to demonstrate the problem. It is seen in 
this figure that the analytical separation of the con- 
ductive network from the insulating matrix is a very 
difficult task [79]. Another problem, emanating from 
Fig. 16a and b, is the choice of a representative picture 
of the structure. In fact, both figures show the same 
mixture at the same magnification. Nevertheless, the 
features of both pictures are quite different. Fig 16a 
shows the CB particles quite well distributed in the PS 
matrix, whereas Fig. 16b shows the CB particles in a 
pure agglomerate surrounded by a filled PS matrix. 
The choice of the "correct" picture is further complic- 
ated by the pronounced influence of the preparation 
method of the samples on the resulting images. It is 
well known that an inadequate preparation method of 
the samples might lead to totally wrong evaluations of 
the micro-level structure of a material [80]. 

The choice of the adequate conduction mechanism 
is also a problem for some of the structure-oriented 
conductivity models. As is shown by Bradbury and 
Bigg [-54] for Nielsen's model, this model failed in 
predicting the electrical conductivity of the mixtures, 
because the author assumed the thermal conduction 
mechanism to be also applicable for the electrical 
conduction. 

The model of McCullough [45] has the advantage 
of not including a prerequisite for the morphology of 
the mixtures. So, it might be applicable for the theoret- 
ical evaluation of the conductivity after rather differ- 
ent processing steps (especially those leading to 
anisotropic material structures). Unfortunately, 
McCullough has not tried to use his equation in a 
general way, but restricted the considerations to mix- 
tures with a homogeneous structure. As is seen in Fig. 
11, the latter case of application of Equation 16a needs 
further optimization to allow a quantitative aggree- 
ment with the experimentally observed behaviour. 

7. Conclusion 
In conclusion, it follows from the discussion of the 
various statistical, geometric and thermodynamic per- 
colation and conductivity models that currently no 
model exists which is able to explain all the different 
results of experimental studies. Furthermore, no 
model is able to account for the extensive influence of 
different processing methods on the percolation pro- 
cess. A good correlation between experimental results 
and a special percolation model does not necessarily 
give significant evidence for the validity of this model, 
but seems to be a consequence of a favourable super- 
position of different serious mistakes appearing: 

(a) in the derivation of the percolation equation; 
(b) when choosing the values of the respective influ- 

ence factors for the theoretical calculation of the per- 
colation concentration or conductivity, and 

(c) in the experimental determination of the con- 
ductivity or the percolation concentration. 
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In view of the serious deficiencies of individual 
models, the disputatious discussion between the sci- 
entific groups, having proposed the different percola- 
tion or conductivity equations, concerning the ques- 
tion "which model fits best the experimental results", 
seem really obstinate. It is not beneficial to the aim of 
finding a generally applicable percolation concept (if 
such a concept exists at all). For the derivation of 
a general percolation concept, a combined activity of 
the involved scientist would be desirable. Such an 
activity might include the mathematically or statist- 
ically motivated scientists to propose reasonable 
concepts for the influence of particular interaction 
parameters. The work of finding all the different para- 
meters of influence might be transferred to the manu- 
facturers of conductive mixtures and the scientist, 
emphasizing thermodynamic percolation concepts. 

On the basis of today's understanding of the con- 
ductivity behaviour of binary mixtures, the conductiv- 
ity/filler concentration curves are best described by 
structure-oriented conductivity equations. However, 
the applicability of such concepts is closely linked to 
the availability of a sophisticated plant for quantitat- 
ively analysing the micro-level strucure of the mix- 
tures. A further complication is the fact that one 

quantitative analysis of the structure only gives one 

conductivity/filler concentration value. So, to obtain 
the whole conductivity/filler concentration curve 
much analysis work would have to be performed. 
Obviously, having the choice between a time-consum- 
ing analysis of the micro-level structure to obtain 
a conductivity value and the possibility of simply 
measuring the conductivity in an adequate cell, one 
would choose the second option immediately. 

The structure-oriented conductivity models are use- 
less in predicting the effect of certain interaction para- 
meters on the resulting conductivity or the percolation 
concentration. Therefore, they do not contribute to 
a general understanding of the percolation process. 

The derivation of structure-oriented equations for 
the conductivity of binary mixtures demands the ac- 
ceptance of the right conduction mechanism and often 
results, as a consequence of the problem of adequately 
describing the micro-level structures theoretically, in 
boundary equations for the conductivity [-47-51]. 
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